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This document presents the embodiment design of a multipropellant resistojet to

use as an auxiiliary propulsion system on the Space Station. Such a system is necessary

to counteract atmospheric drag effects encountered by the Station in its orbit NASA

specifications are strictly followed with emphasis on reliability, operating life,

multipropellant capability, and exhaust emission control. Several design variants are

considered, and the final solution is a resistojet with an electronic pressure regulator,

variable control, an internal flow heater, and a conical nozzle. To construct the resistojet,

the important components are resolved indelmndently, and then integrated with

secondaw, units. The document also includes engineering drawings of the final design

with assembly instructions. Before final utilization, a prototype testing is recommended

to uncover possible problems
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Nomenclature
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English Variables

area

outer surface area of the heater tube

speed of sound

inside diameter of tube

outside diameter of tube

diameter of resistor wire

Young's modulus

view factor of surface i seen from

surface j

gravity proportional constant

enthalpy

heat transfer coefficient

current

thermal conductivity

length of resistor wire

length of the heater tube

Mach number

mass flow rate

number of radiation shields

electrical power into the resistor

pressure

stagnation pressure

heat flux

heat transfer between radiation shields

electrical resistance of heater

thrust

melting temperature

temperature at i

velocity

ATLM
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¢ffrnr

%T

0

Y

Greek Variables

logarithmic mean temperature difference

emissivity

overall efficiency of the heater

electrical resistivity

modulus of rupture

percentage of ideal thrust

nozzle half-angle

ratio of specific heat

density

iy





Problem Cla rification

To counter the effects of drag on an object orbiting in the upper atmosphere of the Earth,

some method of propulsion is required. Otherwise, the orbit decays. For extended use with the

Space Station, such a propulsion system should minimize propellant payload requirements, be

reliable, have an extended operating life, and control exhaust emissions that could disturb station

operations [Larson, 1987].

Resistojets are ideally suited for the needs of the station since waste gases produced on

the station are used as the propellant, and no combustible or massive propellant must be shuttled

to the station as payload [Larson, 1987]. In one mode of operation, the high temperature mode,

the waste gases are heated by an electrical resistance heater and then expanded through a nozzle

to provide thrust to counter the effect ofdrag. Ifw_te gases must be expelled, yet no thrust is

required, a warm mode of operation is used. A power and flow control system, integrated into

the station control system, can be installed to make the system self-sufficient and efficient. Also,

a plume shield can be installed to control emissions for environmental safety. Therefore, the

resistojets can be designed for reliable operation over their operating life, minimal cost, and for

compliance with National Aeronautics and Space Administration (NASA) specifications.

This paper presents the detailed embodiment design ofa resistojet for Space Station

integration. The methodology followed in the conceptual design is presented, and the final

solution is justified. Then, key issues are individually identified and resolved. Having

constructed the components of the resistojet, the components are integrated into a final

assembly. Finally, the resistojet is evaluated and procedures are suggested for prototype testing.

Conceptual Design

The key specifications defining the functional requirements and constraints for the

resistojet system were supplied by NASA. For brevity, orily these key specifications are included

in the report (see Table 1). A complete specification list is included in Appendix A.

The critical specifications not defined by NASA include the seal and material constraints.

Seals are necessary to make the resistojet system a closed loop system in the interest of

environmental safety. Safety factors have been included in the specification to insure these seals

will not rupture due to high pressure, or melt due to high temperatures. Also, material

constraints are the limiting factors of the resistojet design. Materials appropriate for the entire

range of operation are important. Hence, a safety factor for all materials is also included as part

of the design.

Based on these key specifications, a complete functional analysis and justification was

constructed (see Appendix B). The function structure, shown in Figure !, is included to show

the flo_v of material, energy, and information through the system.



Table 1. Critical Specifications

F/C D/

W

F D

F D

C D

F D

F D
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F D
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C D

C D

Operationallifetimeof I0,000hours(I0,000cyclesover18years)

Generate50-350millipoundsofinstantaneousthrust

Materials must withstand temperature and pressure ranges of operation

Operate with an average power < 125 W, with a peak power of 500 W

Heat waste _ses from 0 - 1400 °C

Withstand an input g_s pressure of 80-1000 psia from the storage tank

Accommodate multipropellant mixtures, primary gases: (I-I20, N2, Air, At', CO_)

Impulse over life of operation -- 2x 106 lbUs

Control waste gas exhaust plume so as not to contact the station

Points of attachment of the heater must be < 300 °C

c" D Sealants must withstand temperatures and pressures ranges (safety factor of I. 5)

From the functional analysis, the primary functions essential to the operation of the

resistojet were chosen. They include the heater, the nozzle, and the flow and power controllers,

where the problem of plume control is considered a nozzle function. With each of these

essential functions, brainstorming was implemented to introduce possible design variants. The

resulting list of designs for the resistojet system is shown in Table 2.

Before constructing a decision matrix to choose the final design, the inferior designs

were eliminated due to the large number of possil_le combinations (160). First, the fixed valve

and simple orifice flow control variants are combined into a single va.,iant, because both perform

the same function of setting a pressure drop dependent on the upstream pressure. Also, the

variable valve and the mechanical pressure regulator have been combined into one concept that

gives a constant downstream pressure.

In considering the power control variants, since resistojet operation is not continuous,

constant heating was eliminated because of its low efficiency. Also, various power control

options were eliminated because of their incompatibility with the flow control options. For use

with the simple orifice, both two setting and on/offcontrol were eliminated based on the fact

that fine power control is needed if the pressure is allowed to change with time without

"intelligent" control. Similarly, on/off power control with a mechanical pressure regulator

provides neither a variable flow nor a variable input power, and can be eliminated.

In considering the nozzle, the function was defined as the means to expand the heated
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Figure i. Function Structure

Table 2. Design Variants

Flow contro_

Electrical Pressure

Mechanical Pressure

Reulatore    

Fixed Valve_L___

Variable Valve

Power Control

constant

o_off

variable

two-s____._._._P_tL__

Heater ._.._.__

external flow/internal

heater __._____

internal flow/external

heater ________

Nozzle

contoured or bell-

Expansion/

Deflection

Conical



gasesexiting the heater to provide thrust, and to exhaust the cooled gas away from the Space

Station. It should be noted that each of the nozzle geometries considered make up the diffuser

section of a converging-diverging nozzle. The converging-diverging geometry is the only

feasible nozzle design, since the waste gases exiting from the heater at a subsonic velocity must

be accelerated to supersonic speeds.

The most efficient nozzle geometry in gas expansion is contoured, or bell-shaped.

Ho_'ever, this geometry does not yield effective control of the exhaust plume. Without exhaust

plume control, waste gas contact with the station, environmental contamination, or the

deposition of precipitates on sensitive surfaces (i.e. the solar panels) could occur. Through

extensive research, Sutton found that the conical nozzle geometry, with a plume shield, offers

optimum plume control [1975]. Since this conical geometry lacks only a few percent in

efficiency compared to the contoured nozzle, it was selected as the design to pursue.

For the heater, advantages and disadvantages were listed for each variant. With the

external flow/internal heater, intricate parts requiring complex manufacturing are necessary

[Pugmire, et al., 1986]. These parts include a thin, tightly wound resistor coil, which must fit

inside the 5-10 mm diameter gas pipe, a suspended inner core directly in the path of the high

temperature and high speed gas flokv, and an internal resistor. With these components, the

heater will have a short life expectancy, in that the thin coil introdu_s a weak surface directly

into the high speed flow of the hot gas. Also, high temperatures inside the inner core, and a poor

force distribution on the core, which could result in creep under high temperatures, limit the

heater life. On the other hand, efficiency with internal heating is an advantage. The fact that the

flov, is external, indicates that heat leaving the core must flow through the propellant.

Therefore, minimal insulation is required.

In the case of the external heater, the efficiency is lower due to the radiation of heat to

space Thus, good insulation is necessary. However, compared to the internal heater, this design

is simpler to manufacture, consisting of fewer parts and an external resistor which does not

require such a small coil diameter. Also, this heater has a longer life expectancy, since areas in

contact with the hot gases are smooth surfaces. That is, the resistor coil can be placed on the

exterior of the gas pipe, rather than directly in the flow. Also, since the outer shell is easy to

mount with a good force distribution, greater reliability is expected.

The only major disadvantage for the external heater is efficiency, which can be corrected

with good insulation. However, the disadvantages associated with using the internal heater are

defined by the resistojet specifications. Thus, external heating is selected as the design to

pursue.

Four concept rating factors were chosen from the key specifications with which to

compare the remaining designs in the decision matrix: thrust control, efficiency, reliability, and



cost. Thrustcontrol wasbasedon howfine thethrustcouldbecontrolledwith thepowerand

flow controlsystem,while efficiencywasbasedon maximizingthepoweroutput to inputratio.

Reliabilitywasbasedon theresistojet'sability to operate within specifications in every

foreseeable case, and cost was based on weight (i.e. as shuttle payload), manufacturing, and

operating costs. Selection of rating factor weights, and the design variant weights, is included in

Appendix C. The resulting decision matrix is shown in Table 3.

Table 3 Conceptual Decision Matrix

Design Variants

Flow.Power control

Orifice/Variable

Mech.'2 setting 1.75 / 5

Mech/Vanable 3.15 / 9

Elec..'2 settin_ 2.45 / 7

Elec.:On-Off 2.45 / 7

Elec:Variable 3.5 / 10

Note: Each design variant includes

Thrust Control

35%

1.75 / 5

Efficiency

27%

Reliabiliw

27%

Cost

11%

0.99/9

Total

1.35 / 5 2.43 / 9

1.89 / 7 1.89 / 7 I.I / I0 6.63

100%

6.52

1.89 / 7

2.43 / 9

2.43 / 9

2.7 / 10

1.89 / 7 0.99 / 9 7.92

1.35 / 5 0.77 / 7 7.00

1.35 / 5 0.77 / 7 7.00

1.35 / 5 0.55 / 5 8.10

the external heater/internal flow and the conical nozzle.

In deciding which of the two final design variants to pursue with the embodiment design

phase, the final decision was based on a more in depth look at the concept rating factors used in

the decision matrix. This more in depth study focused on the major differences between the two

,,ariants: how fine of control is attainable, and how efficient the system operates. Costs between

the two vaned widely; however, no maximum cost was specified by NASA. Thus, it was not

considered. Similarly, reliability variations were not considered because with both designs, the

extended life specification is met.

Both devices have fine thrust control, since the heater input power can be varied to be

any value between 0 and 500 W. Yet, the electronic pressure regulator is slightly better in that

its flow control can also be varied without physical intervention. Furthermore, the fact that the

flow control can be varied gives the electronic pressure regulator better efficiency. That is, a

system which has fine flow control to control the flow rate for minimal input power is much

more efficient than a system which relies solely on power control. Therefore, the electronic

pressure regulator, variable power, external heater, and conical nozzle was chosen as the design

variant to pursue.



Key IssuesTo Be Addressed inEmbodiment Design

Intheconceptualdesignphase,crucialspecificationsoftheresistojetsystemwere

identified.From thesespecifications,key issuesoftheembodiment designphasewere

identified.Table4 containsa listof thekey issuesconfrontingtheresistojetdesign.

Table4. Key Issues

Overall understanding of the gas flow through the system

Thrust Control

Integration of pressure, current, and temperature into a single control system

Monitoring of properties necessary for control

Geometry and material selection for each system component

Reduction of heat loss from the heater

Costand Reliability

EnvironmentalSafety(Plume controland Seals)

Inte_'ationofcomponents intothefinal,completesystem

First, an overall understanding of the resistojet is necessary if the effects of the variable

tank pressure and gas composition on system performance are to be determined. Due to these

variables, one operating mode (i.e. a constant flow rate and input power) can not control the

resistojet to within the specified range of instantaneous thrust required. Thus, another key issue

is thrust control. To control the thrust, as will be seen in thermal calculations, the gas flow and

power input must be controlled. These properties are dependent upon the gas pressure

downstream of the electronic pressure regulator, the current to the resistor coil, and the

temperature of the gas flowing through the heater. Furthermore, these three values are

dependent upon one another, and they must be integrated into a single control system.

By iterating the pressure and nozzle exit Mach number, the calculations are used to

determine feasible nozzle and pipe geometries, as well as the flow control requirements, to yield

a chosen thrust for a given input power. Also, they determine the operating ranges of the system,

allowing material selection issues to be pursued.

How will the control system monitor the fluid properties necessary for thrust control?

Devices are necessary to monitor the current flow to the heater, the gas temperature at the heater

inlet and outlet, and the pressure downstream of the pressure regulator to allow the control

system to adapt. Thermocouples for temperature measurements, and transducers for pressure

measurements x_lll be considered.
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Another key issue is the geometry and matenal selection for each of the system

components. Geometry selection involves taking iterative steps with initial, arbitrarily selected

dimensions until specifications are met, and must be carried out for all components. For

example, within the heater, geometries are needed for the resistor coil, the insulating radiation

shields, and the gas pipe. Then, with the specified component geometries, and their range of

operating conditions (i.e. pressure, temperature, stress, etc.), materials must be selected for each

component.

Once materials are found to meet specifications, they should then be chosen for low cost

and high reliability, two more key issues facing the resistojet. While no maximum limit is

specified, cost is an issue, and is based on materials, manufacturing, operation, and weight as

shuttle payload. On the other hand, reliability is specified as a crucial specification. High

reliabilit2,' must be insured by identifying the system's weak points, and then modifying them

until system strength is uniform.

Since the external heater was chosen as the heater to pursue, problems with heat loss to

the environment are introduced into the system. In fact, the decision to choose the external

heater was based on the assumption that this heat loss could be reduced with effective insulation.

Questions that need to be resolved include how much insulation is required, what modes of heat

transfer are acting, and material selection.

Another issue facing the resistojet is environmental safety. A primary function of the

resistojet is to dispose of waste gases produced within the space vessel. Disposing these waste

gases involves expanding them into space through the resistojet. Due to the pressure difference

betx_,een the waste gas and space, some back,flow of the exhaust gases will frequently be

observed (Figure 2). Some consequences of the waste gas backflow are mass deposition on

sensitive surfaces of the vessel, and thermal loading and torques imposed by plume

impingement. Forttmately, these problems may be mitigated through careful control of the

exhaust flowfield. By confining the exhaust flow field'downstream of the resistojet nozzle, the

plume is kept away from the vessel, while the maximum thrust is extracted [Carney and Bailey,

1991 ]. Also, the resistojet system must be sealed against leaks. These seals must be chosen to

accommodate the geometry they are sealing, as well as to withstand the system's range of

operation at that point.



Figure 2. IUustrationof Plume Bacld]ow.

Much of the resistojet geometry can be designed more or less independently. However,

in the end, all components must be integrated into the complete system, and attached to the

existing Space Station. These issues require auxiliary components to be designed, including

geometry and material specifications, which must also meet the jet operating requirements.

Means Selected to Address Key Issues

The issue concerning an overall understanding of the thermal system, and how the

specified parameters influence the system, will be pursued using an iterative thermal nalysis.

This analysis will be performed on the extreme cases of 100% composition of each o, the five

primary, waste gases. These extreme cases are chosen to set the resistojet geometry for the

specified parameters, and to determine the range of operation. Since the extremes will rarely be

encountered, simplifying assumptions were made to facilitate the iterative procedure.

To test the actual performance of the resistojet, experiments should be performed with a

prototype. In these experiments, each of the five primary components should be passed through

the system in a laboratory controlled vacuum in _hich thermocouples and pressure transducers

are placed at small intervals (- 1-2 crn) along the resistojet. The gases should be introduced into
• st the effect if any, of the previous gas on the present." tO te • - - • ._- .

the system in a relay fashzon
Thrust control will be pursued by controlling the parameters o_v_hich thrust Is

determined. These parameters will be determined by the thermal analysis. Thrust control can

also be tested in the vacuum chamber. For example, force output may be measured for several

different temperature and pressure settings. .

Integration of controllers will involve some software development. The design team

recommends the use of a high speed computer for processing pressure and temperature data, and

sending appropriate responses to the heater and pressure regulator. Processing and response may

be handled by setting up "Virtual Instruments" in the computer software. One software package

_hich may be suited for this is LabVIEW by National Instruments. The virtual instruments

constructed should include the formulas used to construct the spreadsheets of Appendix D.

$



In considering the pressure regulator, before a new design is created, existing systems

will be sought. If an existing system conforms to the operating specifications for the resistojet,

x_ath or vathout slight modifications, then that system will be selected. If not, a brief discussion

on the adaptation of the pressure regulator for the resistojet will be given.

The heater w_ll be constructed in modules that will be later integrated into a single

component. First, the tube in which the propellant flows will be dimensioned to provide

efficient heat transfer. Having solved the internal flow problem, the resistor geometry and

materials will be selected from energy calculations satisfying average power consumption (125

W). Once again, the resistor design will focus on heat transfer efficiency and reliability. Since

radiative heat transfer will occur, radiation shields will be placed around the heater in the most

compact configuration to minimize the heat loss to space. The unit will need to be supported by

an outer protective sheath sized to withstand operational forces and micrometeorite impact.

Auxiliary components will be needed to assemble the tube, shields, and sheath, and to provide

attachment points.

The problem of specifying nozzle area ratios to maximize the extraction of energy from

the heated waste gases, and to conform to NASA specifications, will be solved with the iterative

thermal analysis previously explained. The nozzle geometry will then be completed by choosing

a half-angle to minimize flow separation. Also, the issue of material selection will be pursued

by considering existing nozzle materials for space applications, and by choosing chemically,

mechanically, and thermally compatible material properties with the waste gases and chosen

component geometries.

Cost is based on materials, manufacturing, weight, and operation. To estimate material

and manufacturing costs, the dimensionally detailed layouts produced and material information

must be given to a machine shop. From this information, they must quantify their labor,

machining, and welding costs. Also, for a weight cost estimate, the resistojet's total weight must

be supplied to NASA, so that an estimate in the respective cost of fuel and space to launch the

system. NASA must also give specifications on energy consumption costs m the Space Station

for a total resistojet cost to be estimated.

Reliability will be pursued by designing safety factors into each resistojet component,

and by choosing components that have extended operating lives in the harsh environment of

space.
Evaluation of plume shield performance is largely experimental. Therefore, a

recommendation is made to perform an experimental evaluation of the actual plume shield to be

used [Carney and Bailey, 1991]. The procedure used by Carney and Bailey [1991] is appropriate

for e_.aluation of the designed plume shield. The experimental evaluation may be performed in

an e_acuated chamber. Rotary pitot tubes can be used to obtain dynamic pressure and local flow



angle. Also. rotary quartz crystal microbalances, which are crystals cryogenically cooled to

ter-r)eratures sufficient to collect mass, can be used to monitor contamination points in space,

al ,_'ing :or the mapping of exhaust flowfields. Based on data collected, modifications can be

made to optimize the plume shield design [Carney and Bailey, 1991]. Also, for environmental

protection, both seals recommended for space propulsion systems and welding processes will be

considered to prevent leakage.

Integration of components consists of attaching the components into a complete system,

and then attaching the complete system to the Space Station.. Selection will be based on

operating range, radiation stability, and corrosion resistance.

Analysis

Thermodynamic Calculations

Based on the NASA specifications, calculations for six different cases of power input and

thrust have been pursued. These cases are presented to define the geometry necessary for the

specified thrust range of the designed resistojet. Each case represents a different combination of

heating and thrust as shown in Table 5.

Table 5. Calculations Case Map

Heating

Thrust

Low (0.2 N)

High ( 1.6 N)

Low (5W)

Case i

Case 4

Medium (! 25

W)

Case 2

Case 5

High(500 w)

Case 3

Case 6

For each of the six cases presented, calculations are given for the five primary waste gases (see

Appendix D). This format for presenting the calculations accounts for the extreme cases, thus

all the possible combinations of gases which may be produced during flight are within these

extreme ranges.

Before the six cases are presented, a set of fixed parameters common to all six cases is

given. These fixed parameters include the initial mass if the tank were completely filled, gas

enthalpy into and out of the heater, stagnation temperature into and out of the heater (which is

assumed equal to static temperature since the Mach number is low), the calculated speed of

sound immediately afer the heater, pipe dimensions, and the nozzle throat dimensions. Many of

these parameters are obtained from calculations based on the given NASA specifications. Other

parameters were obtained from the heater design.

10



Eachcasewasbrokeninto threepans:chosenparameters,iteratedparameters,and

calculatedparameters.After hundredsof iterationsof stagnationpressureandnozzleexit roach

number, the calculated parameters were matched with the chosen parameters for all cases and

each waste gas. The numbers resulting from the iterations deserve some closer attention, as they

lend insight into what is happening to the gases in the system.

One important parameter is the area ratio out of the nozzle. This area ratio (nozzle exit

area/nozzle throat area) was set at 2500. The specific throat diameter is l mm and the specific

nozzle exit diameter is 5 cm. Initially, the area ratio may appear very high when compared to

nozzle geometries of typical rockets. Even so, the large area ratio was necessary to obtain

temperatures low enough to meet material limitations and provide required thrust. Furthermore,

a literature search revealed that other resistojet designs had similar nozzle area ratios.

Another set of parameters which are important are the mass flow rates. The mass flow

rates ranged from 3x10 "5 kg/s to 5xl0 "4 kg/s. With these flow rates, ifthe storage tank is full,

the discharge times were found to be greater than I0 hours. Though the discharge times were

very large, the times could not be reduced due to the strong dependence ofthis parameter on the

limited heater power. Thus, when thrust is not needed, and waste gas must be discharged, the

resistojet will operate in the warm gas mode where the waste gas is heated to between 300°C and

500°C.

The calculated exit pressures and exit temperatures ranged from 0.2 Pa to 1.65 Pa and 4 °

C to 115°C, respectively. These low pressure and temperature ranges are a product of the large

nozzle area ratio and high Mach numbers. The low exit pressures and temperatures also indicate

that a high percentage of the energy stored in the form of high pressure and temperature was

extracted.

Finally, the iterated parameters also deserve consideration. The stagnation pressure,

which is approximately equal to the static pressure since velocities are minimal, ranged from 26

kPa to 570 kPa. This low pressure range is well within the limits of the source tank pressure. In

contrast, the Mach numbers at the exit tended to be quite high, ranging from 9 to 14. One reason

for the high Mach number is the low mass flow rates requiring high exit velocities to achieve the

desired thrust levels.

Heater

The function of the heater is to raise the temperature of the waste gases from the storage

tank before expanding them through the nozzle. The design team identified five critical

s cifications for the electrical heater: an average power consumptio_ < 125._, a peak_power
De _

consumption of 500 W, a waste gas exit temperature of 1400 °C, and heater attachments at a

II



temperature less than 400 °C. Several other constraints are involved, but the design of the heater

will focus on meeting the listed requirements.

The electrical heater for the resistojet will be composed of five major components: the

tube, the resistor coil, the insulation, the supports, and the control system. Each part will be

addressed in a separate section.

Heater Tube. The heater tube is covered on the outside by the resistor coil, and the waste

gases flow inside the tube. This duct is the boundary where heat transfer between the resistor

coil and the fluid takes place• Three design concepts were considered for the heater tube: the

simple tube, the annulus tube, and the channel tube (Figure 3).

",!,
'..___j" _ ;i,.,

Figure 3. Concept variants for the heater tube.

The annulus tube, although more efficient because of its greater surface area, was not an

acceptable design. The annulus was rejected because it required a clearance of less than 2

millimeters between the inner core and the tube to ensure proper mass flow. The best reliability

_as given by' the channel tube with multiple parallel ducts. However, the bulkiness and complex

geometry of a channel tube outweighed its advantages. The simple tube was selected because its

ease of manufacture and reliability.

After selecting the simple tube, calculations were made to determine the dimensions of

the duct. For a given mass flow rate, the diameter ofthe tube directly influences the flow

velocity. Small diameters provide the high flow velocities that are desirable for high thrusts.

However, making the diameters too small will create problems with component integration.

Alternatively, a large tube diameter will create a slow fluid velocity and increase the component

size, requiring more surface insulation and winding material. Calculations of flow velocities and

nozzle performance at these velocities showed that the tube diameter should be between 5 and

20 millimeters. The design team proceeded with a tube diameter of 10 millimeters that will

yield acceptable flow velocities for the various waste gases considered. This dimension is in

agreement with the thermal analysis calculations (Appendix D).
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The length of the tube was determined with an energy balance on the propellant within

the heater boundary region. Because of preheating caused by the heater element, the waste gases

were assumed to enter the tube at a temperature of 770C, about one hundred degrees Celsius

higher than the storage tank temperature [Pugmire et al., 1986]. The problem was further

simphfied to a tube with constant wall temperature. With an experimental prototype, Pugmire

[1986] measured wall temperatures in the heater tube, and recorded the temperature gradients.

The result showed that a gradient of only about 100°C exists.over a large portion of the heater,

and larger gradients are confined to the first few centimeters at the entrance [Pugmire, 1986].

Thus, the constant wall temperature assumption is justified. Using an 80 percent efficiency for

heat transfer, the energy balance was applied to the heater. The maximum length required to

raise the temperature of the propellants to 1400°C at an average power input of 125 W is:

L,-- P_.n (!)
h- _- Du" ATLM

The design team selected a heater length of 30.0 cm (see Appendix F), which will be able

to bring most of the gases to 1400°C at an average power input of 125 W. The wall temperature

was kept under a maximum of 1600°C for material limitations

A thickness of 2 millimeters was chosen for the tube. The tube will be threaded to a

depth of 1 millimeter to provide guide channels for the resistor coil wire. Material selection for

the tube focused on two properties: high thermal conductivity between the coil and tube, and a

high melting temperature. Table 6 lists six possible materials. Platinum was chosen because it

pros ides a good combination of the required properties and is readily available in various tube

sizes Furthermore, Platinum is easily machined and corrosion resistant.

Table 6.

Material

Platinum

Thorium

Tungsten

Zirconium

High temperature metals with high thermal conductivity [Bolz, 1973]

Operating Temperature

1"/70

1750

3400

Thermal Conductivity

(W/m-K)

"/8.7

55.0

114

Density

( g/cm 3 )

21.5

11.7

19.3

Comments

available

radioactive _

1850 25.4 6.53

Chromium 1860 60.7 7.2

k4nlvhdenum 2620 104 10.2 oxidizes at 500°C
|

hard to machine

low k

low k
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Resistor Coil. The heater will raise the temperature of the propellant by resistive heating.

Current will flow through a coil and heat will be created as dictated by Ohm's law. The rate of

heat generation will be proportional to the material resistance and the square of the current

magnitude. Coil geometry is important because coil design affects the heater wall temperature

distribution.

Three possible options for winding the resistor were considered: helix, double helix, and

axial v,inding (see Figure 4). The axial winding was rejected because it was more difficult to

maintain the resistor in close contact with the tubing. The helical winding was selected for its

easy assembly, uniform heating at any cross-section, and increasing temperature toward the end

of the pipe. However, the simple helical coil poses the problem of having one terminal at each

end of the heater. In this configuration the risk of short circuit is increased by running a

returning wire inside the heater. Ultimately, the double helix coil was chosen because of its

more simple and reliable design.

. . .-. - _- ,

si , '_ ,! '

Figure 4. Alternative layouts for the heater resistor coils.

The resistor is a metal wire wound around'the heater tube in a double helix configuration,

and is designed to dissipate up to 500 W. The current input was limited to 30 Amperes because

higher currents would require large wire diameters and would not be compatible with the DC

modulated power controller. Calculations showing how the coil length and wire d. :_.eter v "-e

found are presented in Appendix G.

A list of resistor materials with high melting temperatures was consulted for the wire

material selection (see Table 7) [Metal Handbook, 1985]. Tungsten was eliminated because of

its poor machinability. Tantalum and platinum were acceptable, but both require insulation from

the platinum heater tube to avoid silort circuits. Molybdenum was chosen as the wire material

because it is readily available in wire form, and its higher conductivity reduces the risk of short

circuit.

The wire will be composed of a molybdenum inner core with a platinum coating. This

coating will serve as an electrical insulator and a protective shield against oxidation of the

14



Table 7. High Temperature Materials for Resistor Wire

Material

Molybdenum

Tantalu_

Platinum

Operating

1650

2500

1650

1650

Resistivity

264

396

302

320

m

Wire Diameter

1.59

182

1.66

1.69

Wire

4.15

3 63

3.97

3.90

Thermal

0.033

N/A

0.029._2____0.062

molybdenum. Because the platinum has a coefficient of thermal expansion twice that of the

molybdenum wire, the coil must be sized for material dilatation. The solution is to loosely wind

the molybdenum wire around the heater, allowing for coil expansion. The necessary gap was

found to be 0.5 millimeters per turn of wire.

Power Control. The power controller monitors and adjusts the temperature of the heater

to keep the temperature of the exiting propellants at 1400"C. The resistojet will use adc power

controller designed by NASA's R. P. Gruber to fulfill this function. Only minor changes will be

necessary to adapt the controller for this specific resistojet design.

In the original controller design, the device senses the heater temperature through

thermocouples located at the heater's surface. The controller regulates the power input to the

resistor coil to maintain the fluid exit temperature at a preset value. Current signals are

generated as pulse-modulated de power at a frequency of 430 Hz, and delivered at up to I kW to

a 15f/load. The electronic circuit includes several MOSFET transistor chips, gate resistors, and

zener diodes. The assembled circuit is simple and can be constructed on a small circuit board.

For resistojet integration, the input to the controller will be i 50 Volts dc, and the

maximum current will be 30 Amperes. This current Will be fed into the resistor coil, which has a

resistance of about 0.56 f_. The control unit will use thermocouples to detect the heater

temperature at the tube inlet and outlet. This information will feed into the controller unit,

which changes the current to accommodate the temperature difference.

The thermocouples chosen to provide temperature feedback information for the heater

were b'pe B. This decision was based on the high temperature characteristics of type B

thermocouples derived from the platinum-rhodium metallic combination. Type B

therrnocouples are useful for the temperature range of 0 *C to 1700 *C.

Radiation Shields, An important issue in the design of the resistojet is insulation of the

heater section. The lack of an atmosphere outside the tube means that the primary mode of heat

loss is through radiation. To minimize heat loss from the heater coil and tube, radiation shields
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will bedesigned around the tube to minimize heat loss. Certain characteristics were important

in the design, including low material emissivity, low weight and a shield geometry and spacing

which permitted only radiative heat transfer. For this resistojet design, a series of materials was

considered (see Table 8). Several materials were eliminated from this list on the basis of

melting temperature. The shield will be constructed as a material foil that can withstand 1600 °

C near the heater coil. The foil will also have low weight and low emissivity as well.

Table 8. Heater Insulation Materials [Metals Handbook, 1985]

Material

Platinum

Stainless Steel 410

Aluminum

Nickel

Gold

Copper

Chromium

_agne_ium

Emissivity

.08

.17

.04

.07

.O2

.05

.24

.10

Density (g/cm 3)

21.5

7.8

2.71

8.9

19.3

8.94

7.2

!.74

i

Melting Temperature (*C)

1770

1500

650

1453

1064

1085

1860

650

On this basis, platinum was chosen as the primary shield material because it offers a very

high melting temperature, and a very low emissivity. However, platinum also has a very high

densiW, so stainless steel 410 was chosen as the second material. Stainless steel 410 has a

melting temperature of 1500"C, but it also has a lower density, lower cost, and is more durable

than the other materials [Callister, 1991 ].

With an outer sheath diameter of 7.3 cm and a tube outer diameter of 1.4 cm, there will

be only 2.95 cm between the tube and sheath. All shields will be constructed as a foil material,

with thicknesses of. 1 mm for the platinum shields and. 15 mm for the stainless steel shields.

The foil configuration maximizes the surface area for radiation, reduces weight, and allows more

shields to be installed. Also, there will be a spacing of !.5 mm between each shield, which is ten

times the thickness of the thickest shield. To maintain this spacing, several platinum wires of

15 mm diameter will be wound around the jet between each shield at several locations along the

length of the heater.

Using the available distance and the specified thicknesses, two platinum and 13 stainless

steel 410 shields will comprise the radiation shield assembly. The calculations for this

procedure are detailed in Appendix 1. Platinum shields were minimized became they are heavier
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and more expensive than the stainless steel shields. In addition, the high melting temperature of

the platinum shields are not needed on the outer portion of the jet.

Outer Sheath. In order to protect the inner components and provide structural support,

the resisto.)et must be housed in a sturdy assembly which will protect it from damage inflicted by

micrometeorites and vibration. The housing, or sheath, should also have good heat transfer

characteristics (i.e. low emissivity). After a search of materials, Iconel X was found to be the

best overall choice. Iconel X has a low emissivity (.2), a good combination of toughness and

strength, and will not react with any gas components which may reach that surface [-Howell,

Bannerot and Vliet, 1982].

The dimensions of the outer sheath of the resistojet were determined by heat transfer

analysis. Bv using heat transfer analysis to determine the outer diameter, the effects of heat loss

can be controlled, which helps improve the overall efficiency of the resistojet. The heat Iransfer

analysis of the outer sheath is covered in Appendix H. Through this analysis, the inner diameter

of the sheath will be 7.3 cm, with a thickness of 0.5 cm. This yields a total diameter of $.3 cm

for the resistojet. The added wall thickness provides a more stable structure for the jet, and does

not simaificantlv alter the overall heat transfer characteristics
w °

A mounting plate was designed to serve two functions: minimize the

amount of conductive heat transfer through the base of the jet and improve structural integrity.

To accomplish the first task, a material was needed with low thermal conductivity, as well as

good mechanical properties. Sintered alumina (A1203) was chosen because it has the best

combination of modulus of rupture (Star =200-345 MPa), modulus of elasticity (E=37x104

MPa), and thermal conductivity (k=30 •1 W/m'K) [Schey, 1987].

The mounting plate serves to connect some of the inner components as well. The

radiation shields will be attached to the back plate by welding the spacing wire to the plate.

Notches in the back ofthe plate will be designed for alignment of the jet onto the mounting

surface, with holes drilled through the outer rib for mounting fasteners. The plate is also

designed with connection leads for the heater element, which will also fit into the mounting

surface.

Pressure Regulator

The pressure regulator used in the resistojet is one of the primary components of the

entire system. This component allows the resistojet to achieve the demanded thrust levels, while

mitigating the severe (possibly high frequency) loading of the heater. Therefore, a more detailed

discussion on this important component is justified.

The function of a pressure regulator is to reduce the pressure of a high pressure source to

a prescribed lower pressure. Essentially, this device allows for the controlled extraction of
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energy, from an energy, source. In the resistojet, an electronic pressure regulator was chosen

based on the need for dynamic, perhaps, continuouscontrol of the waste gas pressureduring

finng of the jet. An electronic pressureregulator is actuatedelectromagnetically using

solenoids. The regulator chosen for the resistojet electronic regulator is a pressureregulating

valve [Lansky and Schraeder, 1986].

The pressureregulating valve operatesby monitoring the downstream pressure. In the

resistojet system,a pressure transducer will be employed to monitor this pressure. Appendix E

describes the selection of this transducer. In responseto the desired downstream pressureset by

the control system,the throttling of the valve is adjustedasnecessary. The throttling

configuration for the resistojet is a simple one, consisting of a spring, a piston, and a cylinder.

Downstream of the regulating valve, some oftbe gaswill be bled into the cylinder. In response

to the pressureof this gas, the piston will rise or fall, the level being determined by a spring

which pushesthe piston against the cylinder pressure. Thus, the downstream pressureis set by

the compressive force of the spring, which is determined by the spring constant and the level of

initial spring compression. The compressive force exerted by this spring is controlled by the

solenoid, which, in turn, is controlled by the integrated control system. As the piston rises, a

needle valve attached to the piston will rise and start to close, reducing the pressure. If the

piston falls, the valve will fall and open, increasing pressure until the desired level for resistojet

operation is reached [Lansky and Shraeder, 1986].

The force required by the solenoid to shift the high pressure differential valve may be

high. Thus, a large solenoid with a high inrush current demand is necessary. An alternating

current solenoid is selected because it can operate at high inrush, while maintaining low holding

current levels. This results in low power consumption [Lansky and Shraeder, 1986].

Material selection for the electronic pressure regulator housing and pipe fittings is again

based on the need for similar thermal coefficients of expansion to prohibit the introduction of

excessive shear stresses on the seals. Thus, to comparewith the gas pipe, platinum is chosen for

the housing and gas pipe fittings. Material selection for internal components (i.e. spring, needle

valve, piston) is based on corrosion resistance, strength, and non-r_ctiveness with the waste

gases. As explained with the seals, stainless steel is chosen for the regulator internal

components.
Specific calculations determining the pressure regulating valve have not been done due to

time limitations. If time permitted, the following calculation to size the pressure regulator would

be pursued. Regulator sizing is based on providing the downstream flow rate, where:

V[m']. compression ratio (2)

flow rate [m'/s] =- iime to fill cylinder [s]
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Flow Control. For control, the system is a closed loop system. The microprocessor

receives the transducer signal, compares it to a desired set point, determined by what thrust and

input power levels are desired an_ is passing through the system, and

sends a feedback signal to the solenoid to exert the required compression force on the spring.

With a microprocessor, response time is dependent upon the amount of time needed to fill and

compress, or vent and decompress the cylinder volume under pressure control [Lamky and

Schrader, 1986]. Thus, Equation (2) also affects flow controitime response.

Nozzle Though the area ratio is a determining factor in the performance of the nozzle, it is not

the only significant parameter. The calculations leading to the designed nozzle area ratio were

based on steady state flow assumptions. The validity of the steady state flow assumption is

largely determined by the nozzle half-angle, 0 (see Figure 5) [Hill and Peterson, 1992].

f0, NOZZle Half-angle

Diverging Portion of Nozzle

Figure 5 Nozzle H_f-ansle.

Given a fixed nozzle area ratio, the length of the nozzle and the rate of change in nozzle

area are governed by the nozzle half-angle. Ifthe rate of change in nozzle area is too great, flow

separation may be encountered in the nozzle. The net result would be a drop in thrust produced

and an increase in pressure and temperature [Hill andPeterson, 1992].

Hill and Peterson [1992] offer the following relation for determining the percentage of

ideal thrust, */o"1",obtained given a nozzle half-angle,0:

%T = 0.5 (1 + cos 0)
(3)

If we confine our consideration of percentage of ideal thrust to greater than 90%, this relation

states that the maximum nozzle half-angle allowable is 37*. Equation (3) also implies that a

nozzle half-angle of 0* (or an infinitely long nozzle) is necessary to achieve ideal thrust. A trade

off bet_een nozzle length and thrust must be made. The nozzle half-angle chosen in the design

was 25°, allowing for up to 95% of ideal thrust. This angle was considered a fair compromise

for thrust and geometry.
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The nozzle geometry was already defined in the conceptual design of the resistojet. The

specific dimensions for the nozzle include a 25 ° half-angle, area ratio of 100 into the nozzle,

area ratio of 2500 out of the nozzle, and throat diameter of 1 mm.

The selection of materials for the nozzle must receive considerable attention because of

the vet) "harsh environmental conditions. During operation, the nozzle material must resist

extreme temperatures in the range of 4°C to 1500°C. Furthermore, the nozzle internal surface

must be chemically compatible with the exiting propellants to avoid corrosion. Mechanical

properties are also very important for abrasion resistance against gases exiting at high velocities,

and possible shock waves. Finally, to avoid interconnection failures and fluid leaks, the nozzle

material must have a coefficient of thermal expansion close to that of the heater tube material,

namely platinum.

Several commonly used nozzle matenals were _ .dered for the resistojet application.

For example, graphite has excellent properties at high : eratures up to 3000°C and has low

densit). of 2.25 grams/cm 3, but it was eliminated beca_ of its weakness at low temperatures.

Metallic oxides and carbides are developed for high temperature application but they were not

chosen because they are brittle and difficult to manufacture [Wolff, 1962]. Finally, refractory

metals offer good mechanical properties in the temperature range of interest. The best among

these metals are tungsten, tantalum, and molybdenum. Except for tungsten which is difficult to

machine, tantalum and molybdenum meet the specifications. However, the use of these two

material would reduce the reliability of the heater tube and nozzle connection because the

coefficient of thermal expansion for these two materials is about half that of platinum

[Handbook of Metals, 1973]. Platinum was selected at last in an effort to increase the resistojet

reliability. This material meets the requirements in terms of good thermal and mechanical

properties, coefficient of thermal expansion, and also good thermal conductivity that will help in

heat dissipation. The high temperature properties of platinum can fur_er be improved by

alloying, thus grain stabilized platinum was chosen for.the resistojet nozzle [Morren, 1986].

Plume Shield

Control of the exhaust flow field may be achieved through the use of plume shields. Two

types of plume shields appear in Figure 6. Carney and Bailey [1991] performed an experimental

evaluation of these two plume shield configurations. The first configuration is a simple conical

plume shield (see Figure 6a). The second configuration is a variation ofthe first. The second

plume shield studied is a conical plume shield with an annular plate placed at the exit plane (see

Figure 6b).
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Figure 6. Alternative Plume Shields

Carney and Bailey [1991] found that the conical plume shield with an annular plate at the

exit plane was more effective in controlling the exhaust flowfieid. Though the simple conical

plume shield limited backflow to roughly 0.2% of the total resistojet mass flow, the addition of

the annular plate further reduced the amount ofbackflow by a factor of 2. Over the lifetime of

the resistojet, mass deposition may be reduced from 7 kg to 3.5 kg [Carney and Bailey, 1991].

Based on the work done by Carney and Bailey [1991], a decision was made to include the

conical plume shield with the annular plate in our design. Admittedly, the annular plate

configuration does not offer a significant advantage over the simple conical configuration.

Ho_'ever, the addition of the annular plate is neither costly nor imposes excessive weight to the

design.

Components Integration

To complete the final resistojet, the individual components must be integrated while

paying considerable attention to mechanical connections and electronic control. First, the

mechanical parts are assembled focusing on function sharing. Once the assembly completed, the

electronic control loop is laid out.

The heater is constructed starting with the resistor wire wound in a double helix around

the platinum tube. Then, the nozzle and the mounting plate are diffusion bonded to the heater

tube and sealed against propellant leakage. Radiation shields are wrapped around the resistor

coil using small wire inserts to insure the correct spacing. Before placing the outer sheath, one

of the thermocouples needs to be placed between the heater tube and the nozzle. The complete

heater unit will then be attached to the outer sheath, the ceramic plate will be bolted, and the

nozzle _,elded by diffusion. The last assembly on the heater requires the plume shield to be

bolted to the end of the resistojet. The mechanical integration is completed with the pressure

regulator placed upstream from the heater on another extension pipe. For good thermal coupling
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and mechanical compatibility, this pipe has the same inside and outside diameter as the heater

pipe and is also made of platinum. The pipe will need to be at least 20 cm long to limit

temperature contamination of the pressure regulator. Therefore, the exact length is adjustable to

fit spacecraft configurations. Immediately before the heater inlet, the second thermocouple is

fixed on the same pipe. A more thorough treatment of the seals appears in Appendix J.

Because they are small units, the power and pressure controller will be placed inside the

spacecraft where they will receive the input signal required for operation. These components are

electronic circuits that can interface with an onboard computer. As designed, the resistojet

requires two input signals. First, the pressure regulator, which functions as a modulated valve,

adjusts to the signal carrying the information that turns the resistojet "on" or "oft". The second

input will tell the system whether thrust is required or not.

After receiving the two operating signals, the resistojet becomes a self-sufficient device.

The output from the two thermocouple are fed to a central processing unit. This microprocessor

adjusts the power in the resistor and the upstream pressure as to keep the propellant to a

specified temperature and to maintain required thrust.

Conclusion

Based on the specifications set forth by NASA in their effort to find a system which

could counter the detrimental effects of atmospheric drag on the Space Station's orbit, and

simultaneously exhaust waste gases produced on the station in a safe and environmentally

conscious manner, this paper presented the embodiment design phase of an electrically powered

resistojet. The resistojet was pursued as a result of its extended operating life, multipropeilant

capability, reliability., and ability to control exhaust emissions.

First, a summary of the conceptual design phase, including the specifications, the

functional analysis, the investigation and elimination of feasible resistojet design variants, and

the selection of a concept through a decision matrix was presented to provide the reader with

requirements of, and objectives for, the embodiment design. Basically, the resistojet was

designed for fine thrust control, efficient use of available power, reliable operation, and minimal

cost. The electronic pressure regulator, variable power control, external heater, and conical

nozzle concepts were selected as the designs to pursue because they provided superior thrift

control and efficiency.

With these design objectives, and the limiting specifications, key issues to be pursued

with the chosen concept were identified and researched. To solve many of these issues, an

iterati,,e approach was taken with the thermal operation of the resistojet. This thermal analysis

allowed the component geometries and operating parameters for every possible waste gas

composition, required thrust output, and available power input to be determined. Then, based on
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these parameters, material selection for each of the primary resistojet components was

researched, and a single material was chosen for the nozzle, heater tube, pipe, and pressure

regulator pipe fittings to allow for a common thermal expansion for the components directly

contacting the waste gas flow. This was done to maintain mechanical integrity, and to prevent

en,,ironmental contamination from seal or weld rupture.

After designing the primary resistojet components, it became apparent that several

auxiliary components were needed for a final assembly and for integration with the Space

Station. Both the geometry and material properties of these auxiliary components were chosen

to mesh with the existing design. Also, some manner of seal or weld was necessary to make the

resistojet a closed loop system, and to prevent leakage. Therefore, the method and material

selection for leak ,rotection was based on performance in the harsh space environment, and high

mechanical int.. _,'y.

ProtoD: pc :esting of the resistojet system is recommended as the next step in the design of

the resistojet. Several experimental procedures were defined, such as plume shield and thrust

control testing. In the thermal analysis presented, many simplifijring assumptions were made,

since only the general range of operation of the resistojet was desired. To account for the

difference between ideal and real conditions, experiments must be performed. After prototy]:)¢

testing, and the pursuit of any necessary concept modifications, proceeding with the detailed

design phase is recommended.
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Appendix A

Full Specification List

D/W

D

W

D

D

D

D

D

D

D

D

D

D

Requirements ....

1. Forces:

Generate 50-350 millipounds of instantaneous thrust

Weight < 20 ibs on Earth (equivalent to 9 kg of mass)

Withstand shuttle launch forces and vibrations of 3.3 sustained G's

Withstand micrometeonte impact

2. Energy:

1

Withstand inlet gas pressure of 80-1000 psia

Heat gases from -1 C to 1400 C for discharge

Operate with peak power input of 500 W and avera_ ._wer < 125 W

Seals must withstand temp. an¢ pressure operating ranges (1.5 safety factor)

Impulse over life of operation = 2x 106 Ibf*se¢

Material:

o

Withstand temperature ranses of operation

Withstand pressure ranges of operation

Must not off-gas in a vacuum

Must not react with waste ffases

Signals:

D

D

D

W

D

D

D

Outputs:

Inputs:

Change in gas temperature needed

Change in the current to the heater

Change in pressure needed downstream of the pressure regulator

lnstantaeous gas temperature in the heater

Instantaneous current to the heater

Instantaneous pressure downstream of the pressure resulator

Minimal response time

5. Safety:

Emergency system stop

6. Operation:

Must accomodate multiple propellents: H20, N2, Air,Ar, CO_

Must have life of 10,000 hrs, or I0,000 cycles over 18 years

Must o_rate in zero gravity



Appendix B

Functional Analysis

Black Box Description

Waste gas ..._

Heat

Need thrust

Need to vent gas

Convert waste gas to thrust

and vent waste gas

Expanded gas

Thrust
IP"

Operation completed

Process Description

Waste gas _...

Heat

Need thrust

Determine mode of

operation

Execution Conclusion

Regulate pressure Expand gas throush

Control pressure nozzle

Control power Control plume

Heat gas

Expanded gu

Thrust
r

Operation con'_eted

Need to vent gas

Z_



Function Structure

Waste gas
from tank

On/Off

Material

_--- Energy

...... -I_ Information

Heat A _-..--------

V

pressure .....

Yes: High temp
mode

_ _._._ ..... _Ng:......warm gas
mode

Expanded
gas

Thrust



Function Structure Justification

The function structure of the resistojet is divided into three flows. For the

material flow, waste gas from the tank first goes through the pressure regulator and into

the heater. The waste gas will be heated in the heater to the temperature needed,

depending on what mode is required (i.e. high temperature or warm gas), and then

expanded into space through the nozzle. Once the heated gas leaves the nozzle, the

plume will be controlled to prevent any interference with any payload viewing function

and to prevent any environmental contamination.

Electricity is the main source of energy for the resistojet. Electricity will provide

ener_.' to the power control, the pressure control, and the heater. In the heater, there will

be some energ?' losses due to radiation. Also, energy will exit the system in the form of

heat and mechanical energy.

The initial signal for the information flow is a signal from the tank indicating that

the waste gas needs venting. If thrust is needed, the resistojet will operate in the high

temperature mode and heat the waste gas to about 1400"C. If thrust is not needed, the

reststo.let will operate in the warm gas mode where the waste gas will be heated to

between 300°C and 500°C. Separate signals will be sent to the pressure and power

controls to set the appropriate levels. The pressure control will then send a signal to the

pressure regulator to control the incoming waste gas, while the power control will send a

si_al to the heater to control the temperature. These signals must be integrated into a

single controller because of their interdependance..



Appendix C

Decision Matrix Rating Factors and Weightings

Thrust control was given the highest weighting of thirty-five percent because it

defines the operation of the system. That is, given the specification list, the resistojet

geometry., dimensions, control system, and material limitations are all based on the

necessity to control the thrust within the specified parameters. Once the system

parameters are defined, the system is designed for efficiency and reliability. Therefore,

they were given equal weights of twenty-seven percent. Efficiency is important due to

the limited power resources available on the station, whereas reliabilty was defined by

NASA as a crucial specification. Cost was given the least weight (eleven percent)

because a maximum limit was not quantitatively specified. However, cost is important,

as with any design, for economical reasons.

In a decision matrix, each design was rated on a scale of five to ten for each

concept rating factor, where a ten is the best possible design, and a five is acceptable. A

scale with a larger range was considered, but deemed unneccesary since all designs

considered in the decision matrix are acceptable. From the decision matrix, two designs,

the mechanical and electronic pressure regulators with variable power control, external

heating, and a conical nozzle are chosen.
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Appendix D

Thermal Analysis

Equation List for the Thermal Analysis

q: ,_{H+,,:/2g.].: ,i,[H+v:/g.]=

_= P/RT

rh= OvA

Mach = v/c

c = 7RT

equation i

equation 2

equation 3

equation 4

equation 5

: [,/M]{[:__+,]1[,+[t,.-, ]/2].' ]t<'-_'<:<'""]1
A_,J

equation 6

P" : [l + [[ 7 + ,]/2]M:]["r.,-,_]
P

T = thv,_ + P_,Jt_

equation 7

equation 8

Equations one throughseven are found in Saad's Compressible Fluid Mechanics book

[ 1993]. and equation eight is taken from Hill and Peterson's Mechanics and

Thermodynamics of Propulsion book [ i 989].

An important key issue concerning the design of the resistojet isan understanding

of the fluid flow through the resistojet system. The most crucial specifications governing

the dynamics of this flow of were supplied by NASA. With the given values listed on the

dimensional analysis, these specifications include the power available to the heater, the

required thrust for each resistojet, the operating life for each resistojet, the storage tank

pressure and temperature, the heater inlet and outlet temperatures, and the waste gas

composition.
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Thermodynamic Assumptions:

Inviscid Flow

Ideal Gas

Constant S.,pecific Heats .._.___.__

N_ Minor Head Loss._.__

I, ?ntr_E_ic Flow ._.______

_is a Constant Pressure Process

Isothermal Tank Dischar eg_e _.._

Ideal Nozzle ________.

Heater is 80% Efficient

Gas is Steady Flow and Steady State

One-Dimensional Flow __.___-----

Calculations were performed based on these defining specifications, as well as on

several fixed parameters. Firstly, the heater was considered. Since the inlet and outlet

temperatures of the heater are fixed, by assuming ideal gases, we see that the inlet and

outlet enthalpies are dependent only on waste gas composition, and can be found from

thermodynamic ideal gas tables. By writing an energy balance for the heater, shown in

equation 1, we can compute the gas mass flow rate by choosing an inlet power to the

heater. This energy balance assumes the gas is steady with respect to flow and state.

Kinetic energy, terms are present in the energy balance; however, we assume that their

influence on the mass flow rate is negligible.

Was the assumption that the heater inlet and outlet velocities had a :" : gligible

effect on the mass flow valid? By arbitrarily selecting the gas pressure, where we assume

the heating to be a constant pressure process, the density of the waste at the heater inlet 6_0_
and outlet can be calculated from the ideal gas law, shown as equation 2. Then, from

these densities, the inlet and outlet velocities can be calculated from the continuity

equation, shown as equation 3. As seen on the dimensional analysis, the velocities are

vet3' small. Thus, our assumption introduces less than 0.1 percent error.

At the heater outlet, the Math number can be calculated from the outlet fluid

velocity and temperature by using the definitions of Mach number and the speed of

sound[shown as equations 4 and 5, respectively. Then, at this point, an initial nozzle

_eometry. was assumed. For isentropic flow, equation 6 relates nozzle area ratios (i.e. the

.:ca at any point in the nozzle over the throat area) to the Math number at that point, and

the ratio of specific heats [Saad, 1993]. Therelbre, at the nozzle inlet, the inlet area ratio

can be calculated. Initially, this calculated inlet area ratio does not agree with the



assumed area ratio. However, by iterating the arbitranly selected pressure, the fluid

density is changed. In turn, the flow velocity is changed, which changes the Mach

number until the calculated and assumed inlet area ratios agree.

Similarly, by assuming a nozzle exit Mach number, equation 6 can be used to

calculate the nozzle outlet area ratio. Then, the initial Mach number can be iterated so

that the assumed and calculated exit area ratios compare. From the nozzle exit Mach

number, the nozzle exit pressure ratio can be calculated using another isentropic flow

property relation, shown as equation 7. Here, since the flow is isentropic, no shock

occurs,'and assuming an inviscid fluid, the stagnation pressure is constant throu_out the

nozzle. Also, since the fluid velocity in the pipe has a very small Mach number, this

sta_ation pressure approximately equals the static pressure in the pipe. Finally,

choosing a value for thrust, the nozzle exit velocity can be found from equation 8. Then,

by the definition of Mach number, the nozzle exit temperature can be calculated.

By iterating the pressure and nozzle exit Mach number, these calculations are

used to determine feasible nozzle and pipe geometries, as well as the mass/pr_sure

control requirements, to yield a chosen thrust for a given input power. Also, they

determine the operating ranges of the system, allowing material selection issues to be

pursued.
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Appendix E

Pressure Transducer Selection

For proper flow control, some method of measuring the pressure downstream of

the pressure regulator is necessary. That is, given desired input power and thrust levels,

if the waste gas composition changes, the current pressure must be monitored in order to

compute the necessary change. Rather than designing transducers specifically for

resistojet application, catalogs of existing stock items were consulted. From one Omega

handbook, several sensors with operating capabilities comparable to those required by

the resistojet were found, and are shown in Table 9 [1989].

Model #

PX-236

Table 9. Pressure Transducers [Omega, 1989]

Pressure

range (psig)

0-100

Temperature

range (°C)

-30 to 70

Response

time (ms)

!.0

PX-180 0- 100 -55 to 75 20

PX-120 0- 100 ..40 to 125 50

PX-300 0 - 150 -29 to 60 20

Accuracy

% of full _..ale

± 15

Corrosion

Resistance'?

No

±0.3 Yes

±10 Yes

±0.5 No

Co_

85

125

150

125

The transducer was selected for meeting the temperature and pressure ranges (ie.

-I °C and 0-83 psia, respectively) at the point of installation just downstream of the

regulator. Also, other factors considered were response time, accuracy, corrosion

resistance, cost, and durability. Durability was not listed in the Table, because all

transducers considered were specified with an operating life of 100 million pressure

cycles [Omega, 1989]. Based on these specifications, model #PX-180 was chosen for its

superior accuracy and corrosion resistant housing. However, one slight modification

must be made in order to integrate the transducer into the resistojet gas pipe. That is, the

pressure port is too long, i.715 cm, for pipe-fitting (i.e. diameter = 1 cm). Thus, it must

be shortened to 3 mm to maintain sufficient strength in its attachment to the pipe, and yet

allow the flow to pass with minimal disturbance.

Reference

Omega, Pressure, Strain, and Force Measurement Handbook, 1989.



Appendix F

Heater Tube Length Calculation

Assumptions:

Heater is 100% Efficient

Constant Wall Temperature

Constant thermal conductivity

Fully developed laminar flow

eater properties:

heater tube inside diameter

power into heater

temp. of propellants into heater

temp. of propellants out of heater

average wall temp. of pipe

logarithmic mean temp. difference

l_i 0.01 meters

Pin 125 Watts

Tin 77 deg C

Tout 1400 "

Twavg 1500 "

LMTD 498 "

Analysis:

Apply an energy balance to the heater

Solve for the required length

Pin = h*A*LMTD

L -- Pin / (h*Pi*ER*LMTD)

Results:

Propellants

thermal conductivity k (W/m-K)

heat transfer coefficient h (W/m2-K)

required length for exit @ 1400C (m)

Air H20 Ar

0.0675 0.0981 0.0427

29.45 42.81 18.63

0.271 0.187 0.429

N2

0.0648

28.28

0.282

CO2

0.068

29.67

0.269

Selection:

The final heater ler .:h was set at
0.3 meters



Appendix G

Heater Coil Length andWire DiameterCalculations

For uniform heating, the resistor coils must cover the entire surface of the heater

tube. The heater tube vail be threaded with a pitch of one. wire diameter to ensure a

perfect helical winding. This threading also prevents adjacent turns from touching and

producing a short circuit. The threaded length is equal to the length of the resistor wire

and is calculated to be:

7t.l_..t., (1)

2.D_,

The coils must output up to 500 W by resistive heating, and Ohms law gives the

relationship bet_een power dissipated (Pin) and wire length:

P,,= R.I2 4.p-L,,..i _ (2)
7t.D,_

Combining Equations ( ! ) and (2) we define an expression relating resistor wire diameter

to reststivib of the wire material:

D,,

The follo_,,ing spreadsheat shows the iterative meihod used to determine the ienght and

diameter of the resisto_ wire



Diameter and Length Calculations

for Resistor Wire

Assumptions:

Ignore possible inductance effects

Constant resistivity

Heater Properties:

heater tube outside diamete Dt 0.014 meters

power into heater Pin 500 Watts

heater tube length Lt 0.3 meters

Analysis:

Choose a materialthereforespecifyingthe electricalconductivity

Molybdenum r(Ohms-meter) 2.64E-07

Calculate wire diameter

Calculate length of wire

Dw = ((2*Dw*L*r *I^2) / PinY'(1/3)

Lw = (Pi*Do*L) / (2*Dx_.,

Results:

Choose input current I (A) 10 20 30 35 40

Wire diameter(Dw) 0.0008 0.0012 0.0016 0.0018 0.0019

Length of resistor wire (m) 8.65 5.45 4.16 3.75 3.43

Selection:

The final resistor wire is of Molybdenum Dw 0.002 meters

Lw 3.4 meters
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Appendix H

Outer Sheath Heat Transfer Analysis

A critical aspect of the design of the resistojet is that of the outer sheath. This

sheath must provide a protective housing for the inner components of the jet, as well as

minimize radiative heat loss. In this design, heat transfer was the primary design

characteristic. The first step in the analysis was setting the goal efficiency of the heater.

For this design, a minimum acceptable efficiency of abo_for the heater was

used, yielding a maximum heat loss of 20 W at 500 W input power. Also, the outer

temperature was designed for a maximum of 400"C, which would limit the amount of

heat which was lost to space.

Certain assumptions were also made for the casing. Space was assumed to have a

temperature of 0 K and an emissivity of 1.0. Radiation was considered negligible at the

nozzle-end of the jet, and the view factor between the sheath and the outer surface was

assumed to be unity. For the outer casing, the emissivity was designed for a value of

0.25. Using the Stefan-Boltzmarm law [Bayazitoglu and Ozisik,198g], the heat flux was

calculated:

0".[ T, "=- T2' ]

q = [(liFt-2)+(1- _)/_+(l-c_)/C2l

x_'hich equaled 290.3 W/m 2, a rough approximation for the surface radiative flux.

Dividing total heat loss by the heat flux, the outer surface area was determined to be

0.0689 m 2 with a diameter of 7.3 cm.

Using the previously stated target value of 0.2 for emissivity, Iconel X was

determined to be the best material [Howell, Barmerot, and Vliet, 1982]. Iconel X has an

emissivity of 0.2, which falls within the assumed value. In addition, lconel X is a

stainless steel, which means that the outer surface will have a favorable combination of

toughness and tensile strength. The surface will also remain non-reactive with

components of the plume gases, which may be deposited on the surface [Howell,

Bannerot, and Viiet, 1982]. To ensure the structural integrity of the casing, the inner

diameter of the casing was set at 7.3 cm and the outer diameter set at 8.3 era. This

increase in diameter resulted in a sheath thickness of 5 ram, making the structure more

reliable. The increased diameter also did not appreciably change the overall heat transfer

characteristics.



Appendix 1

Radiation Shield Analysis

The pnmary mode of heat loss in the resistojet is through radiation. Steps mo0t

be taken to reduce this radiative heat loss and improve the jet's overall efficiency. The

solution to this problem is radiation shields placed concentrically around the heater

assembly. The key to designing the radiation shields is to reduce the temperature as

much as possible over the 2.95 cm distance between the heater and casing without

allowdng conduction of the heat.

To accomplish this task, the shield design will use foil radiation shields. These

sheets v, ill be thin enough to allow multiple shield placement without risking heat

conduction. Also, the low thickness and high conductivity of the foils will make the

temperature gradient very small through the sheet, simplifying the heat transfer analysis

[Bayazitoglu and Ozisik, 1988].

The first part of the analysis involves material selection. Platinum shields will be

used to withstand the 1600"C temperature of the heater surface, and stainless steel 410

will be used for the cooler shields placed further from the heater. Since platinum is

about three times heavier than SS 410, the platinum shields will be used only to reduce

the temperature below the melting point of the stainless steel shields [Metals Handbook,

1985]. Foil thickness of the shields will be 0.1 mm for platinum and 0.15 mm for SS

410.

Several assumptions were made for this analysis. The shield system was

approximated as a series of parallel plates, with view factors Fn, n+ 1 = !.0. Surface

areas were taken at a mean distance between two shields, and heat power was assumed as

10 percent ofthe power setting. Foil spacing was assumed to be i.5 ram, or 10 times the

highest foil thickness. Using a modified version of the radiation equation, where e =

emissivib' and n = number of shields in series,

Qn "-

,,1,. o'-[T,' - T=']

[(n+ 1)-(2/6'- 1]

for heat transfer between each shield [Bayazitoglu and Ozisik, 1988]. With this heat

transfer analysis, the shield temperature drops to about ! 380"C after two platinum

shields. Carrying this analysis out further using the values for SS 410, it was found that



13stainlesssteelshieldswouldbeneededto reducetheoutersheathtemperatureto 400*

C.

Using the number of shields with their thicknesses and spacing, the available

2.95 cm was quite adequate to prevent shield contact. Spacing for the shields will

involve winding 1.5 mm diameter wire around the heater and shields at various

locations. The remaining space of 6.35 mm was divided into a shield/casing clearance of

2.175 ram, and a heater/shield clearance of 4.175 mm Extra clearance was allowed

between the inner shield and heater to provide more space for the heater coil winding.



Appendix J

Seals

An important issue with the resistojet is environmental contamination. The

system must be effectively sealed against leakage. Both welding processes, and polymer

and metallic seals were considered to join the components and provide leak protection.

Seals are catagorized as static or dynamic depending on whether there is relative

motion between the seal and the components it is sealing [Goetzel, 1965]. Common

resistojet materials were selected for each component so that, when thermal expansion

occurs, the relative motion between components would be minimized. However, due to

nperature gradients, dynamic seals will be required. For use in a propuls;: q system,

•tzei [1965] recommends stainless steel and aluminum alloys, teflon, an,- 'on.

h ,_ever, these materials can not withstand the 1400 °C temperature seen at ,_eater

exit. Therefore, seals will be used for all component junctions except that at _,e heater

exit, where welding will be considered.

Among the three recommended seals, stainless steel was chosen for its operating

range (-252 to 648 °C), its excellent corrosion resistance to each of the waste gases, and

its radiation stability in a vacuum. The selection over the teflon and nylon elastomers

was based on the fact that metallic seals are developed for their capability of not being

affected by radiation [Goetzel, 1965].

Among the welding processes considered, diffusion welding was selected based

on the fact that similar metals will be welded, and that better bonding is obtained when

the temperature is high enough to ensure diffusion, typically above half the melting

temperature [Schey, 1987]. The melting temperature of Platinum, the heater tube and

nozzle material subject to 1400 °C, is 1770 °C. Grain stabilization, as explained in the

heater material selection, was introduced to impede diffusion. Thus, for diffusion

bonding to work, the nozzle and heater must be welded before grain stabilization. Since

a common material was chosen, there will be no relative motion due to thermal

expansion, and thus no resulting shear stresses on the weld. The only force that the weld

must support, assuming no impact of micrometeorites, is that of the thrust. Thus,

diffusion bonding before the grain stabilization is chosen as the heater/nozzle seal.
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Appendix K

Detailed Drawings for the Resistojet

List of Drawings

1. Assembled Resistojet

2. Heater Inlet

3. Resistojet Components

4. Nozzle

5. Mounting Plate

6. Plume Shield
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